For applicants For learners For teachers For Heads of Departments For Deans Electronic administration Documentolog Қаз Рус Eng
Подать заявку на заселение в общежитие
Non-profit limited company
"Manash Kozybayev
North Kazakhstan university"
larger
Faculty News
NSSF: День национальной одежды

День национальной одежды читать далее

18 March 2025
NSSF: 100-летие Е.А.Букетова

100-летие Е.А.Букетова читать далее

18 March 2025
NSSF: Көрісу күні құтты болсын!

На факультете Истории, экономики и права прошло празднование Көрісу күні читать далее

14 March 2025
NSSF: Открытие Open Historical library

Бүгін тарихи кітапхананың ашылу салтанаты өтті читать далее

14 March 2025
NSSF: Студенты ФИЭП приняли участие в национальной игре «Бөрік теппек»

Студенты ФИЭП приняли участие в национальной игре «Бөрік теппек» читать далее

14 March 2025
NSSF: На ФИЭП-е прошел конкурс «MISS TEACHER»

6 марта 2025 года Кафедра «Журналистики и социальных наук» провела конкурс «MISS TEACHER», посвященый Международному женскому читать далее

06 March 2025
NSSF: На ФИЭП-е открыт уголок военной прокуратуры Петропавловского гарнизона

5 марта 2025 года в библиотеке Северо-Казахстанского университета имени М. Козыбаева состоялось торжественное открытие информационного уголка военной читать далее

06 March 2025
MF: Мәңгілік ел – моя страна!

В завершение празднования Дня благодарности медицинский факультет 28.02.2025 г. в УЛК в  организовал квест «Мәңгілік ел – моя страна! читать далее

28 February 2025
MF: Check out – Проверь себя!

Под девизом «Проверь себя!» 28.02.2025 г. в УК №2 прошла благотворительная акция, приуроченная к празднованию Дня благодарности, организов читать далее

28 February 2025
Читать все

Development of a Neural Network Model for UAV Recognition through an Optical-Electronic Channel Integrated into the Data Fusion System

This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant No. AR19679009).

   

Project Manager: Kurmashev I.G., Candidate of Technical Sciences.

Project Performers: Kurmashev I.G., Candidate of Technical Sciences, Serbin Vasily Valeryevich, Candidate of Technical Sciences, Arrichiello Filippo, Doctor of Technical Sciences, Semenyuk V.V., Master, Alyoshin D.V., Master, Kryuchkov V.N., Master, Kurmasheva L.B., Master.

Implementation period: 2023 – 2025.

Project goal: To develop a software model for UAV recognition based on neural networks, adapted to the "FMCW radar + video surveillance" platform, performing high-quality and highly accurate recognition, classification, and differentiation of these objects from birds by analyzing the optical channel and micro-Doppler characteristics of the target. Expected outcomes: Development of a software model for UAV recognition based on algorithms of two types of neural networks, adapted to the optical and radar channel of the "FMCW radar + video surveillance" system. Project description: The project idea is to create a neural network software model, one part of which is designed for UAV recognition through radar imaging of micro-Doppler signatures, ensuring more accurate classification of drones and birds. The second segment of the software model defines a neural network application for UAV recognition through video data and photo images of objects in the airspace (quadcopters, "flying wing" UAVs, birds, etc.). The unique feature of this development lies in its adaptation to an Anti-Drone radar system with a software-hardware platform based on "Radar + Optical Channel" as an automation element for UAV recognition using two detection channels. The performance and effectiveness of the developed software model depend on the characteristics of the radar system and optical camera, making the selection and justification of the radar model and surveillance tool a key task. Additionally, the project will present the mathematical characteristics of radar signal reflection from targets with vibration sources, determining Doppler indicators for recognizing flying objects (UAVs and birds). The structural description of the Data Fusion system, into which the developed software model is integrated, along with the characteristics of the neural network algorithms serving as the basis for classification and recognition software within the research framework, will also be provided.